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Abstract

This paper gives a theory of spectral approximation for
closed operators in Banach spaces. The perturbation theory
developed in this paper is applied to the study of a finite
element procedure for approximating the spectral properties of

a differential system modeling a fluid in a rotating basin.
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Introduction

In this paper, we give a theory of spectral approximation
for closed operators in Banach spaces. We then apply this tleory to
an analysis of the approximation of the spectral nroverties of
some differential systems by finite element methods.

Bramble and Osborn [l] and Osborn (14] developed a theory of
spectral approximation for compact operators in Banach spaces.
Their theory can be applied to the analysis of many numerical
procedures for the spectral approximation of differential operators,
T , such that T + AI has a compact inverse for some X € T .
Most of the differential systems in the theory of elasticity are
in this class.

However, there are many differential systems of interest in
mathematical physics which do not have compact resolvents. These
operators can have continuous spectrum, eigenvalues of infinite
multiplicity, and finite limit points of eigenvalues. Also, the
eigenfunctions need not be smooth since the differential systems
are not necessarily elliptic.

Descloux, Nassif, and Rappaz [4,5] have studied the approxi-
mation of the spectrum of a differential system of interest in
magnetohydrodynamics which has a bounded inverse, but not a
compact inverse. They developed a theory of spectral approximation
for bounded operators which treats this problem. An analysis of
the approximation of the spectral properties of a class of bounded

operators by finite element methods has also been done by Mills

{12, 13]).
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The results in this paper apply to closed (not

necessarily bounded) operators in Banach spaces. We apply the
perturbation theory developed in this paper to the study of a
finite element procedure for approximating the spectral properties
of a differential system modeling a fluid in a rotating basin.

We note that unlike previous authors, we analyze the approxi-
mation of the differential operator directly and not through its

inverse.

The time dependent equations for the differential system

modeling a fluid in a rotating basin are




-
‘Sa—i"v'ﬁ, (x,t) € T x R,
34 . N —
«A=0, (x,t) € 30 x R ,

’

LAl
[
”
1]
(=

where QC IR2 is a bounded, connected open set with smooth

boundary, 39 , 4 = (ul,uz) is the horizontal volume transport,
Z is height of the fluid above equilibrium level, R 1is the
linear operator Ru = (-uz,ul) ' n is the exterior normal to
3@ , and £ > 0 and w are real constants representing
friction and Coriolis terms.

Thus, we are concerned with approximating the spectral

properties of the system

T(z,8) = (-V+0,-Vg - fa - wRU) , x€Q ,
«chA=0, x e 3 ,

-
u
[ zdx = 0.
7]

We note that T - I is a symmetric, formally dissipative operator

with maximal non-positive boundary conditions [9] .




If £=w=20, then T(0,RVY¥) = 0 for all smooth functions

Yy such that ¢ = 0 on 232 . Hence, in this case (f = w = 0},
0 1is an eigenvalue of T of infinite multiplicity. Since

the sum of an operator with non-compact inverse and a bounded
operator has a non-compact inverse, it follows that T - AI

has a non-compact inverse for the general case f,w € R, A € C ,

X belonging to the resolvent set of T

We give here error estimates for a finite element procedure
proposed by Platzman [15] to approximate the spectral properties
of (0.2) . The selfadjoint case f = 0 was analyzed by Luskin
{11] by techniques different from those used here.

In Section 1 , we give a general theory for the approximation
of a closed operator A by a family of finite dimensional operators
{Ah} . In our applications, A will be a differential operator
and Ah will be an approximation of A given by a finite
element procedure. We propose two properties Pl) and P2) and
show that these properties imply the convergence of the spectral
properties of Ah to those of A . Error estimates in the applica-
tions will follow from Theorem 1.3.

We give special results in Section 2 for the case A and
Ah are selfadjoint operators in a Hilbert space. These results
apply to the approximation of continuous spéctrum.

The operator theory developed in Sections 1 and 2 is

applied in Section 3 and 4 to examples of the approximation of
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spectral properties of differential operators by finite element
methods. In Section 3 , we apply our theory to obtain error
estimates for the approximation of the spectral properties of
scalar, second order, uniformly strongly elliptic operators

by the standard finite element method. This example is included
even though the results are not new since we believe that its
inclusion will make it easier for the reader to understand our

main example in Section 4.

In Section 4, we define and analyze the approximation of T .
Theorem 1.3 gives optimal order estimates for the approximation
of eigenspaces. Optimal order eigenvalue estimates for this
problem have been given in [1l1] for the self-adjoint case and

are derived from the results in this paper and {[3] for the
general case.

We note that we use without explicit reference the classical

spectral theory; see for example Kato [6], Riesz-Nagy [l6] .
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1. Approximation of the Spectrum of Closed Operators in Banach Spaces.

We first introduce some notation. Let X be a complex
Banach space with norm || || . Denote by ®(X) the set of
pounded, linear operators B: X + X . Also, denote by C(X)
the set of closed, linear operators C: l?YC) CX + X where the
domain of C , WL(C) , is not necessarily dense in X . For

c e C(x) . p(C) 1is the resolvent set of C defined by

plc) ={zet |(z-0) L e Bx)}

If z e p(C) , we define the resolvent operator Rz(C) = (z-C)-lz

X * X . The complement of p(C) is o(C) = {z e €|z & p(C)} ,
the spectrum of C
Let Y and 2 be closed subspaces of X and x € X .

We set

§(x,Y) = inf ||x-y]] , 8(¥,2) = sup §(y,2) ,
yey TeY
lylf=1

A

8§(Y,2) = max(6(Y,2).6(2,Y)) ;

§(Y,2) is called the gap between Y and 2 and is a measure of
the "distance" between these spaces. If ¢ and D are in C(x)

with graphs G.,G, C€X x X , then we define §6(C,D) = G(GC,GD) , 1.e.,

c’™D
§(c,p) = sup inf { [|x-y|| + [lcx-Cy]| !}
x€ &) ye £(D)
=]+ llcx {l=1

Furthermore, we define

8§ (c,p) = max(s(c,D),s(D,C)) .
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Finally, if Y is subspace of J}XC) N &) , we set

llc-olf , = sup || Cy-Dyl|
ey

lyll=1
Now, let A € e(X) be a given operator. In order to
approximate o (A) , we consider a family {xh} of finite
dimensional subspaces of X parametrized by h and linear operators
A

.+ X

h h °
We denote by o (A,), d(Ah) , and R, (A

h
1_1): Xh-> Xh the

spectrum, resolvent set, and resolvent operator of Ay considered

as a bounded operator in X However, when used in connection

N
with expressions of the type "§(A.,A)" or 1]A-Ah}|xh » By is
considered as a closed operator in X with nondense domain X, -
Let T ¢cp(A) be a given Jordan closed curve; then
E=xx [ R (A)dz: X=X
2ri r 2 :
and if T c:p(Ah) '
1

are the spectral projectors relative to A and Ah respectively.

We shall also use the relations
1
AE = —=— i sz(A)dz: X+ X

and

AE, = xr [ zR (A)dz: X+ X .
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We now introduce the following two properties:

Pl) lim 6 (A _,A) = 0 ,
h+0 Ah

P2) ¥x € X , lim 6(x,xh) =0 .
h+0
The following theorems contain the main results of this section.
We note that ¢ < ® sghall denote in this paper a positive
constant which is independent of h , but which varies frgm

estimate to estimate.

Theorem 1.1. Suppose Pl) is valid an? let K c p(A) be a

compact set. Then there exists h, > 0 and c¢ = c(K) such that

0
for h < h0 we have K C’p(Ah) and
IR, @)-r, (Al < cS(a ,n) , zexK.

h

Theorem 1.1 shows that if P1l) 1is valid, then the approxima-
tion of o(A) by c(Ah) is upper semicontinuous. Furthermore,
for h < h, , |IR_(A)]| is uniformly bounded on K . This

0 z2h Xh

is a stability property.

Theorem 1.2.  Suppose Pl) is valid. Then there exists ho > 0

and ¢ so that for h < ho we have the bounds

(1.1) HE—EhHXh +”AE'AhEh”xh < S (AL .A)
(1.2) s[sh(xh) /E(X)) < cf (A, ,R)
(1.3) 6Lx,sh(xh)‘) <ecléGe,x) +6(a M) x|}, xeEx .
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Theorem 1.3. Suppose that Pl) and P2) are satisfied and that
E(X) 1is the finite dimensional subspace corresponding to an
isolated eigenvalue A of algebraic multiplicity m of A

Let & be the ascent of (A-A) and let f be a holomorphic

function defined in the neighborhood of X . We set
Y, = mln{G(AIE(X),Ah),5(Ah,A)}

Then for h small enough, A Eh(xh) - Eh(xh) has

| :
h Eh(xh) !

exactly m eigenvalues Xl h""'xm h repeated according to
’ ’

multiplicity. Also, there exists 4h0 > 0 and c¢ such that the

following bounds are valid for h < h

0 H
(1.4) §(E, (X)) E(X) < oy, .
1 M
(1.6) £ - = i£1 £ < evy o
(1.7) max IA-)\i’hlaicyh .

i=1l,...,m

Remarks. If Pl) and P2) are satisfied, then (1.3) of

Theorem 1.2 shows that lim §(x,E, (X)) = 0, Vx € E(X) , i.e.,
h+0

any X € E(X) can be approximated by vectors in Eh(x It

h) .
is not true however that any 2z € g(A) can be approximated by
eigenvalues of Ah ; i.e., there may exist =z € og(A) so that
dist(z,o(Ah)} fails to converge to zero. (the approximation

of o(A) by c(Ah) is not necessarily lower semicontinuous).

The classical counter-example is the shift operator (see, for
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example, Kato [6, p. 210]). Note that if A and Ah are
selfadjoint operators in a Hilbert space, then lower semicontinuity
is true under weaker conditions than Pl), P2) (see, for example,
Kato [6, p. 431])

In order to prove Theoremsl.l and 1.2, we first prove a

sequence of lemmas which are variants of results found in

Kato [6, p. 197-208].
Lemma 1.1. Let B e@B(X), c e &(X) . Then

a) §(C,B) < |lc-BH£y“” ,

b) lic-Bll g1c)
< (1+{IB]| )26 (C,B) /(1 - (1+||B]] )6 (C,B))

if the denominator is positive.

Proof. Part a) follows directly from the definitions. We prove
part b) . Let x € &1c) , Ixll = 1 and let ¢ > 0 be
arbitrary. It follows from the definition of §(C,B) that

there exists y € X such that
(1.8) [lx-yll + llcx-By || < s(c,B){ |[x|] +[icxil} + .
Consequently, we have

llcx-By|| + || By-Bx||
llex - Byll + (Bl || y=x|i
(1+ [iBl| ){ [Jcx=-By]l + Hy=-x|i}

Il (c-B) x|

In

| A

(1.9)

A

A

(1+ [ Bl )6 (c,B){ |[x|]] +]lcx]| } + e(1+]|B|]) .

e e v e s R

.
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Replacing |[(Cx|{ by || (C-B)x|| + (|B|| [}x]| in the right
hand side of the above inequality and letting ¢ - 0 yields

the estimate

I (c-Byx|| <
(1.10)

(1+ || Bj| ys(c,BY{ (1+ [|B]| ) ||x|| + |l (C-BIx]|}
The result follows directly from (1.10) Q.E.D.

Remark. It follows from Lemma 1.1 that if A € 8 {(x) , then

-

property Pl) is equivalent to lim||A-A ||, =0 . This is the
-4 h

spectral approximation condition of Descloux-Nassif-Rappaz {4]
Lemma 1.2. Let Be @x) ..ad c,pe €(X) . Then
§ (C+B,D+B) < (1+ || Bj] )26(C,D)

Proof. Let x € &) , [|x]] +{ (C+B)x|] =1 and

let ¢ > 0 be arbitrary. We have by the triangle inequality that
(L.11) (x|l *+ Jicxll < [Ix|| +[ (c+)x|| + [[Bx|| < L +{ B .

It follows from the definition of § (C,D) that we may choose

y € éy(D) such that
(1.12) | x=y{l + |{cx-Dy|l < §(C,DY(1+||BY|) +¢ .
Hence,

lx-yl + [ (c+B)x - (+3)g]]
%=yl + J|cx=py|| + [IB|] |[Ix-y]|
(1+ ||B}| ) %6 (Cc,D) + (1+||B e .

A

(1.13)

<
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The result follows directly from (l1.13) after letting ¢ +~ 0 .
Q.E.D.

Lemma 1.3. If ¢ and D e C(X) are invertible, then

s,0) = s(c”t, o7t

) .
Proof. This result follows directly from the definitions. Q.E.D.

Lemma 1.4. Let C,D & ¥(X) and suppose there exists « such

that
(1.14) flox| > KI]xH) x € &)

If §(c,D) < min(l,<), then C is invertible.

Proof. We show that if C 1is not invertible, then §(C,D) > min(l,x).

Let x ¢ &(C) be such that lx]l=1 and Cx =0 . Let
e > 0 be arbitrary. It follows from the definition of &(C,D)

that since Cx = 0 we can choose y € Z}YD) such that
==yl + llDy]l < 8(c,D) + ¢
It follows from (1.14) that

§(C,D) + ¢ > [|x=y|| + < |¥]|
1=yl | + < ly(l
min(l,<){|{1={{yll | + llyil}

v

(1.15)

|v

min(l,c) .

fv

Since ¢ > 0 was arbitrary, it follows that we have reached

the contradiction §(C,D) > min(l,k) . Q.E.D.

e St

!
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Proof of Theorem 1l.1l. In this proof, ¢ depends on K but all

estimates are uniform for z @ K . By Lemma 1.2,
(1.16) 6(z-Ah,z-A) < cG(Ah,A) ' zZ € K.
It follows from (1.16) and Pl) that

(1.17) lim § (z~A

h,z-A) + 0 uniformly for =z € K .
h+0

Since K C p(a) , there exists cl- such that

! (1.18) | (z=2)x|[ > ey jixl| + xe &m), zexk

We can now conclude from (1.17), (1.18) and Lemma 1.4 that there
exists ho > 0 such that 2z - Ah is invertible for h <« h0 and
2 € K. Since Xh is finite dimensional, we have that K C p(Ah)
for h < h0 .

Furthermore, it follows from (l.16) and Lemma 1.3 that
(1.19) §(R, (A ) /R, (R)) < c8(A,,A), z €K .

Hence, we can obtain from Lemma l.lb the result

R, (A)-R, (A, ) || x, < c§ (R, (A) ;R (D))

(1.20)

< cs(Ah’A5 h<h z €K .

0'
Q.E.D.

Proof of Theorem l1l.2. The result (l1.1) follows from Theorem 1.1

and the following estimates:
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E-E + ||AE~A.E
[|E=By || X, Il hehll X,

-— l -
(1.21) = st fl_(Rz(A) R, (A,))dz| X,
1
+ ”2—1”-: J’r (ZRZ(A) -2 Rz(Ah))dZH X
-1
< (2m) max |[RZ(A)-RZ(Ah)H <, ﬂ‘(l+[z[)[dz|

zer

The estimate (1.2) now follows directly from the estimate (l.1l).
In order to prove (1.3), let x € E(X) and Xy € X, . Then

X - E x, = E(x—xh) + (E-Eh)x

h*n . Consequently,

h

§(x/By (X)) SCHEN Nx=xpll + lIE-Eylly ilxy 1)

(1.22)
< “E” + “E-Eh“ X‘h) ”x_xhll + ”E-Ehll xh =l -

The result (1.3) follows by taking the infimum over Xy € Xy
and using (1.1). Q.E.D.
It remains to prove Theorem 1.3. We first guote without proof

the following simple result:

Lemma 1.5. Let Y and 2 be two subspaces of X with the
same finite dimension and let P: Y + 2 be a linear operator

such that

\ 1
(1.23} ley=y{l < 3yl yexy.
Then P is bijective and

(1.24) o2zl < 20|zl . z €2
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Lemma 1.6. Let Y and 2 be two subspaces of X .
a) If 6(Y¥,2) <1, then dim Y = dim 2
b) If dim ¥ =dim 2 < =

§(¥,2) < 6(2,Y) (1-6(z,¥)17 %

Proof. For a) , See Kato [6, p. 200] . For b , see Kato [7}]. Q.E.D.

In this rest of this section, we suppose that the hypotheses of
Theorem 1.3 are satisfied. Also, ¢ and ho will denote two

generic positive constants which depend on T

Lemma 1.7. G(A[E(x)’AhlEh(xh)) < cd(AlE(x),Ah), h < hy

Proof. Let x € E(x), ||x|| + [|Ax|]] =1 , and let x, € X

h h

be such that

||x-th + ”Ax"Ah h” A G(AIE(X) 'Ah) .

We have
|x-Epx |l + ||ax-AE x|
1
= 55t fr‘ (R, (A)x~R_ (3, )x,)dz||
(1.25) L
+ g [ (2R, )x - 2R, (A,)x, ) dz]|

r

IA

(20”1 max iR, (R)x-R_ (A )x

nll [ (+z])|dz]
P r

In order to conclude the proof of the lemma, it suffices to
estimate ||R,(A)x-R, (A x|l for z €T . We set w=R,(A)x € E(X)

and let wh e X be such that

h
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(1.26)  [lw-wyll + Jfaw-A,w {| < 8(alg A (liwll + [lawil ). |
However, ) ;
lwll + llawll = (IR, (A)x|| + [[R,(A)Ax]| |
< Ury@l Cllxl + Al |
= {[R,)]] < ¢, zerl . {
Thus,
(1.27) Hw=wp |+ [|Aw-A,w, || icG(A}E(x),Ah) .

By using Theorem 1.1, i.e., lfRz(Ah)H Xﬁ < c, h E.ho' zer ,

we have
R, Ay xp=w, [ = [IR, (&) (%, = (z=Ap)w, ) I
(1.28) < c{(lxh~xﬂ + l[(z-A)w-(z-Ah)th }
Consequently,
“RZ(A)X - R, (Ah)xh“ =L “w'wh“ + ”wh‘Rz(Ah)xh”
(1.29)

A

cé (A[E(x) Ay . Q.E.D.

Remark. Lemma 1.7 is still valid if the hypothesis Pl) is

replaced by the uniform boundedness of Rz(Ah) on T
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Proof of Theorem 1.3. From (1.2) and (l1.3) of Theorem 1.2 it

follows that Llim S(Eh(xh) ,EX)) =0 . Consequently, by Lemma 1.6 a),
h+0

dim Eh(xh) =dim EX) = m for h < h This proves that for

0
h < hg, AhIEh(Xh): Ey (Xy) * E (X,) has exactly m eigenvalues

A ,Xm h repeated according to multiplicity.

l'h".n
By Lemma 1.6 b), we have that
SLE(X),E (X)) < ¢ min{G(E(X),Eh(Xh)) ,
(1.30)
§ (B, (X, ) ,E(X))} h <h

It follows from Lemma 1.7 that

I

§(E(X), Ep (X)) o8 (Alg x) 2nle, (x,))

(1.31)

A

c6(A|E(x) Ay )

The result (1.31) and (1.2) of Theorem 1.2 yield (1.4) when
substituted in (1.30) .

We have by (1.1) of Theorem 1.2 that

(1.32) s(AhlEh(Xh) ' AIE(X)) < c8(ay,A) h < hy .

Hypotheses Pl) and Lemmas 1.6 and 1.7 allow us to conclude the
validity of (1.5) .

Now let u;,...,u be a basis for E(X) with IfuiH +

m
HAui][ =1, i=1,...,m. We then choose U nttYn,n € Eplx)

so that

(%
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lhuj=uy pll + llawg-age; (I < S(A‘E(}()’AhlEh(xh)] '

(1.33)
i=1,...,m .

Next, we define A, : E(X) -+ Eh(xh) as the linear operator

h
sucn that Ahui = ui,h’ i=1,...,m . It follows by (1.5)
that
(1.34) Hu—Ahu([ + HAu-AhAhulfi oYy Hu[“ u € E(X)

By P}) 1lim Yh
h~+0

a bijection whose inverse Ahl is uniformly bounded for h < ho .

0 , so by Lemma 1.5 and (1l.34) Ah is

I A _ _l . -
‘Let A=A(E(X) and Ah-Ah AhAh. E(X) E(X) . FPor u € E(X) ,

we have

| (A=A dull = AT (A A=A A )ull

(1.35) < el || (Ah-I)AuH + HAu-AhAhull }
< evy llull h < h

Consequently,

(1.36) IA-Bpll g (g < €Yy -

Now Rh has eigenvalues Xl,h""’xm.h and A has the
eigenvalue A of algebraic multiplicity m . Also, a 1is the
ascent of (A-a) . We have reduced our problem to the matrix
case. The results (1.6) and (1.7) of Theorem 1.3 now follow
from the classical perturbation theory for finite dimensional

operators (17, p. 80-81]. Q.E.D.

PR
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2. The Approximation of the Spectrum of a Selfadjoint Operator.

In this section, we suppose that X is a Hilbert space,
A: &) c x » x is selfadjoint, and Ags Xy > X, is
selfadjoint in Xh for all h . If I CR is an interval

(finite or infinite), E X = X will denote the spectral

I:

projector of A relative to I and E X, + X will denote

h,I1° “h h
the spectral projector of Ah relative to I . We can prove the

following theorems: .

Theorem 2.1. Pl) & ¥ closed intervals 1I,J, one of them

bounded, I N J = ¢ , we have

lim ||E(E, .|| =0 .
0 I"h, 31 Xy

Theorem 2.2. Suppose that Pl) is valid. Let J CI where

J is a closed bounded interval and I is an open interval. Then

(2.1) ii% G(Eh,J(xh).EI(X)) =0 .

Theorem 2.3. Suppose that Pl) and P2) are valid.

a) Let I be an open interval and x @ EI(X) . Then
limé{ (x,E (X,)) =0 .
h’o ( ! h'I h )

b) If X € o(aA) , then

lim dist(x,0(a.)) =0
h+0

Sy o
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Remark. Theorem 2.3b states that the approximation of o (A)
by o(Ah) is lawer semicontinuous.
Theorems 2.1, 2.2, and 2.3 have been proved in Section 3
of Descloux, Nassif, Rappaz [4] when A is bounded (recall
our remarks after Lemma 1.l1). Our proof will reduce the
unbounded case to the bounded case. We shall restrict ourself
to the proof of Theorem 2.2. Theorems 2.1 and 2.3 can be obtained
by similar arguments. Furthermore, for the sake of simplicity
and without much loss of generality we shall suppose that

p(A) NR# ¢ .

Proof of Theorem 2.2. As mentioned above, we suppose there

exists a €R with a € p{(A) . We introduce the function
$(A) = (a-\)™' and set B =9¢(A) = R_(A) . By Theorem 1.1,
By = ¢(A)) =R, (7)) 1is well-defined for h sufficiently

small and

lim || B-B, || =0 .
h+0 R Xy
f
For an interval M , FM: X - X and Fh,M: xh ad xh will denote
respectively the spectral projectors of B and Bh relative to 4
M. As a first case, suppose a £ I and set K = ¢(J) and
L=¢(I) . Then K and L are respectively a compact and an

open interval with K CL . From Theorem 4 of Descloux, Nassif,

Rappaz (4], we can conclude that

(2.2) ﬁi% G(Fh’K(Xh),FL(X)) =0 .
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However, the result (2.1) follows from (2.2) since Fh K(Xh) =

Eh,J(Xh) and FL(X) = EI(X)

The case a € I can be reduced to the preceeding one by
noting that we can find compact intervals Jl, J2 and open

intervals I1, I2 with the following properties (for i

sufficiently small):

agiIlyu 12,
Jl1 Cc11, J2<C12,

EI(X) = EIl(X) ® EI (x)

2

Eh,J(xh) = Eh,Jl(xh) ® Eh,JZ(Xh)

P
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3. Application to Scalar Elliptic Boundary Value Problems.

We shall need the following notation to discuss the application
of our theory to the approximation of the spectral properties of
scalar elliptic boundary value problems. Denote by { an open

% with a smooth boundary, 3% . As usual, we denote by

set in R
LZ(Q) the Hilbert space of square integrable, complex-valued

functions with inner product and norm

(3.1) (PG> = [ ¥&x , |F||® =<(F,F) .

We denote by H°(Q) the space of complex-valued functions whose
distribution derivatives of order less than or equal to r,r a
nonnegative integer, are in Lz(Q) with norm
2 ) 2
(3.2) “Fllr = ) [|DVF|| .
| <r

|

We wish to consider the spectral approximation of the

operator
n n
Iu = - D.(a,.D,u) + a.D.u+au, x€egn ,
(3.3)
n
u'= PRRY ‘D- =0 ’ 39
8 . §=l a;4v;D4u x e .

where we assume that L is a uniformly, strongly elliptic
operator with real-valued coefficients in C (3) and

v = (vl,...,vn) is the unit exterior normal to 3Q . We
associate with L the continuous, sesgquilinear form on

at@) x ule) ,
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B(d,v)

L }e)

]
e

Ca ;D042 +

{(a.D,d,v>
=1 373 i i

i, 1
(3.4)
{ag, v

+

We may assume (by replacing L by L + u, u€ R) that for

some b > 0

(3.5) Re B(3,0) > bllsf|? , s e v (@)

Let Q}IC:Hl(Q) be a family of finite dimensional
subspaces parametrized by h , 0 < h <1, with r a positive
integer and ¢ a positive constant, independent of h , such

that for 1 <s <r+ 1, ue¢€ #%(2) , we have

(3.6) inf  (llu=x]l + nffu=xll;) < cn® Jjullg
X € 43y

Many finite element spaces are known to satisfy (3.6) [2]

We define the operator Lh: 311» Jh by the relation

(3.7) (U, W = (LU, WD, Wwe 3, -

Note that L, is well-defined since ,§h is finite dimensional.

h
We shall study the approximation ¢f the spectral properties of L
by the spectral properties of Lh .

Define the space
H2 _ 2 18 -
G(Q) = {ue HQ)|QPu =0 for x & 3Q}

We consider L as a closed operator from LZ(Q) to Lz(a) ’

i.e., X = L2(2) , with domain D(L) = Hg(m . Also, in the
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notation of Section 1, we set xh = .Bh . It follows from
(3.6) that if u e C (R) , then
d(u,.sh) = inf ||lu-xl|] » 0 as h=+0
X€ &y

Since C (@) 1is dense in LZ(Q) , it is clear that property

P2) is valid.

We now turn to the verification of Pl). To that end,
let PD: LZ(Q)-+.3h pe the L%(2) projection,
(3.8) e u-u, WD =0, we d, .
1 1 '3 1 . : .
and let Ph: HT(Q) -~ h be the H"(R) projection defined by

1 =
(3.9) B(Pju-u,W) = 0 , We .Bh

It follows from (3.5) that p; is well-defined.

The following estimates for Pg and P;

[2]. There exists ¢ < » such that for 0 < s <r + 1 and

are well-known

ue #%(Q) ,
o s
(3.10) llPhu-uH < eh” lullg
and such that for 1 < s <r +1 and u¢€ B (Q) ,
(3.11) liptu-u|| + h|jPtu-ull, ¢ ch®|lu|]
) h h 1 - s

We now verify that

(3.12) 6(Lh,L) - 0.
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For Uh € 'Bh r let u e D(L) satisfy

(3.13) Lu = LhUh

It follows by elliptic regularity that

(3.14) lull, < cliz ull

Now it is easily verified that U, = Piu . Hence, by (3.11)

and (3.14) ,

2 2
(3.15) [fu-u =llu—P;u|l§ ch HuH2 < ch l[LhUhH

Nl

Since Lu = LU, , we can conclude that for each Uy e éﬁl,

there exists u € D{(L) such that

2
(3.16) || u-u, | +|lLu-LhUhH < chf( ol + HLhUhH )
Hence, we can conclude that

8(L,,L) < ch? .

It is well-known that the spectrum of L consists of
isolated eigenvalues with finite dimensional generalized

eigenspaces. Let A € ¢(L) and let E(X) be the generalized

eigenspace corresponding to A . Thus, dim E(X) < « . We shall
show that
(3.17) 5 (Ll g (x) rLy) € ch™™

The result (3.17) will imply that the conclusions of Theorem 1.3

are valid with vy, < ch™1 .
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If u € E(X) , set Uh = Piu e ‘gkx' It follows from

elliptic regularity that E(X) cc’@) . Hence, by (3.11)
1l r+l
(3.18) ]|u-PhuH < ch lafl fey -
Also, note that if u € HZ(Q) , then
(3.19) p°Lu = L Plu
- h h“h™ °

Thus, it follows from (3.10) that

1
u||

[[Lu-L, U, 1] = ||Lu-L,P
(3.20)
- o r+l

= |lLu-PhLuH < ch [|Lu||r+l
Note that since dim E(X) < » and all norms on finite dimensional
spaces are equivalent, there exists a constant ¢ < » such that

for ue e (X) ,

|| L]

Ia

|A

lall pyy < < full

So, (3.17) follows from (3.18) and (3.20).
The results on eigenvalue approximation implied by (3.17)
are not the optimal O(hzr) results for this problem that have
been obtained by other methods (1,14] wunless r = 1 . However,
it can be shown that optimal o(th) eigenvalue results for
the problem can be derived from Theorem 1.3 for this problem if the

approximation of L by L is analyzed in a space X which

h
is taken to be an appropriate negative order Sobolev space.
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4. Application to the Linearized Shallow Water Egquations.

We turn now to the description and analysis of an approximation
procedure for the spectral properties of the operator , T ,

associated with the linearized shallow water equations. Recall that

T(:,4) = (-V-Q,-Vz-fa-wRY) , xeaq,
(4.1) d-n=o0, X € 3Q ,
[ zdx = 0
Q
where QCc IR2 is a bounded, connected open set with smooth

boundary, 3Q , U (u;,u,) , R is the linear operator
RU = ('“Z’ul)' h is the exterior normal to 32 , and £ > 0

and w are real constants representing friction and Coriolis

terms. We assume that 9Q has a finite number of connected com-
3Q,}S

ponents, { 1}1=

arcs in IR2 .

o " Also, assume that the sets BQi are smooth

We shall need the definitions of the following spaces

of scalar-valued functions:

L2(q) = (we L@ [ wix = 0}

2
(4.2) rl) = st@n i@ ,

HL@) = (we Bl @] wix) = 0 for x e ap,

and there exists constants,

)3 such that w(x) = c.

(€)1 ¢ i

i
for x e ani, i=1,...,s8} .

For k > 1, set

(4.3) () = al) n @)

k 1 k
Ho(@) = HS(2) n E(Q) .
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We give these subspaces of LZ(Q) and Hl(Q) the inner
product and norms defined in (3.1) and (3.2).
We also define the following spaces of vector-valued

functions:

2,02 _ .+
Lé(@) (W= (u,u,) 0,0, e @) ,

HR(Q)Z

-

{u = (ul,uz)!ul,u2 e Hk(ﬂ)} for k > 1.

With these spaces we associate the inner product and norms
ﬁ,; = (ul,vl> + <u21V2> ’

N = <aud> ,

- "_ 2,\2
for u = (ul,uz), v = (Vl,vz) e L°w)° ,

IEN2 = Nuagllg + Nuyilf

> LK 2
for u (ul,uz) e H Q)™ .

Finally, for functions (z,%) , (£,¥) € LE(Q) x LZ(Q)2

we define the inner product
{e W, €, 0> = {g,e) + L)

and norm

w2 = <@d,,H D

and for functions (z,0) € Hi(n) x L2(Q)2 we define the norm

2 2 > 2
Heowli2 = jel + 1812
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If e LZ(Q)2 + then there exists unique scalar functions

¢ € Hi(ﬂ) and ¢ € Hi(ﬂ) such that
(4.4) U= -V¢ + RVY .

The functions {¢,y} are known as Stokes-Helmholtz potentials

-

for u [8,15], and we define the functions SU =4 , Ha =y

It follows from elliptic regqularity [10] that for k > 0 , there

! exists ¢ = c(k) , ¢ < » , such that
(4.5)  ||su]| < cjld|}, = < c ||l ., vie )2
’ : k+1 k' k+1 — 'k ’ $ .

It is easily verified that

~
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- 1 1,,
(4.6) {vé,RVp) = 0, 6 € Hy(R), v € H_(a)

Hence, (4.4) is an orthogonal direct sum decomposition.

Let {#,} , 0<h<1, bea family of finite dimensional

subspaces of Hl(Q) parametrized by h . Set
c _ 1

(4.7) My =, NH Q)
* 1

(4.8) mE =7, nEHQ) .

We assume that there exists a positive constant ¢ ,
independent of h , and a positive integer r such that for

l<k<r+1land we€ HE(Q) ’

(4.9) inf  (llw-x|| + hlw=xll{) < en® @l .
*
X €7,
and for 1 <k <r+1 and w € Hg(n) '

(4.10) ing o Cllw=xll + nllwexlly) < on® |l wll

c
X e h

We also wish to assume that the spaces {ﬂZh} satisfy the
" inverse property" that there exists a positive constant '

¢ , independent of h , such that

-1
Ix Iy <en " lixlly » x € 7, -
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We shall use the spaces of vector-valued functions

-

7, = (G’U = -T0 +RVY, ¢ EME , Yemp)

It follows from (4.5) ., {(4.9), and (4.10) that for
0<k<rx, Gesc@?,

(4.11) inf ||| < en® 1G), -
xen,

<
M
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We shall need the result that if VYV & ﬁ?ﬁ , then
(4.12) VY @ 77h .

It is easy to see that (4.12) is valid if Zzh contains the
constant functions.

In order to define our approximation procedure, we
introduce the continuous, sesquilinear form B(-,-) on XxX =

i) x L2@?) x i@ x L2@? by

B(,0), (5,9)) = Q,vey - (9%,v)
(4.13) - ( £UHRY,V ),
€., (% e 5@ x L3 ? .

We regard T in (4.1) as an unbounded, closed operator,

v Hi() x L2@2 > L@ x L2@? , with domain

D(T) = {@,W) ¢ e BL(Q)

+

(4.14) detd@? ,v-uent@ ,

4*n=20 onaQ}
Thus, if (¢ ,4) € D(T) ,

Bl ,),(EW) =P, END,

’

(4.15) .
€,%) e vr@) x L2@? .

*
We now define T,: 72, x 77, » Mmp x 7, by

B(z,0), (¢,¥) =<z, 2,0, (1,0,

v, emp x 7, .

(4.16)
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The operator T, is well-defined since the spaces 7%,; x 77h
are finite dimensional.

We now show that the spectral properties of Th
approximate those of T by Verifyinq P1l) and P2) in this
case for X = H}(ﬂ) x Lz(n)2 and X, = Mmf x V”h . The
verification of P2) follows directly from (4.9) and (4.11).
To see this, we note that for (Z,u) € L3(9)11 c™(@ x ™ (@2

it follows from (4.9) and (4.11) that

s((z,8), %) 0 as h~0
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The validity of P2) now follows from the density of Lf(f?) nc @ x
@2 in i@ x L2@? .

We next turn to the verification of Pl) . In order to
prove this result, we introduce and analvze some projection opera-

tors. First, we define the H%(Q) projection P#: Hi(Q) -

h
7.5 by
* - -
(4.17) (V(Phw w) ,i%) =10, x € 7% .
1 . . c, 1 - ¢
and the H(R) projection P_: H_(R) ﬂZh by
(4.18) Y (PSw-w) ,7x D = 0 x € 7S
h ’ ' h

It is well=-known [2] that there exists ¢ < » such that for

l<k<r+1l and we€e HE(Q) ’
k-1
(4.19) HP‘ﬁw-—le < ch Hwil
and for 1 <k <r+1 and we Hﬁ(ﬂ) '
c k-1
(4.20) ”Ph"‘wnl < ¢h “‘"”k'

It follows from (4.11) that if Q¢ L2@)? - 7, is the

LZ(Q)2 projection defined by
(4.21) (B 3-8,%x>=0, X e 7,

then there exists a constant ¢ < «» such that 0 <k<r

and 1 € Hk(n)2 implies that
(4.22) I8, 5-8 < en® 3y, -

It is easily checked that
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->+=-*+ Coe™
(4.23) Qhu VPhSu + RVPhHu

Finally, define the LZ(Q) projection 6h: L, G
(4.24) {Qpw=w,XD = 0, x € Mmf -

It follows from (4.9) and the inverse property of 11’5 that there

exists ¢ < » such that if 1 <k <r + 1 and w € Hf(ﬂ) » then

(4.25) llQyw-wll, < ch

|
Hwilk .

The following lemmas will help us analyze Th .

Lemma 4.1. a) Let ue L)% and X € 7% . Then

(4.26) <G-6hﬁ,vx> =0 .

b) Let ¢ € Hy(2) and X € 7/, . Then
(4.27) , {v(z=PRE) XD = 0 .

Proof. The proof follows easily from (4.6) and the definitions

*
of Ph and 6h . Q.E.D.

Now let @ =pr e Bh: HE(@) x Li(@)? » mE < Ty - .

h h
Lemma 4.2. If (;,8) e D(T) and (v,¥) € 7t x ¥, . then
B((CIE) - ﬂh(CI-ﬁ)I(YIG)) =
; -> _ & -> >
(4.28) (Tl -1 & (g0, (X,
= - (wR(u-3,0),¥)
Proof. The proof follow directly from the definition of B and
Lemma 4.1. Q.E.D.
$
e - T IOR——
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~

Hence, it follows from Lemma 4.2 that if Qh = Qh @

O+

(c,u) € D(T) , and (Y,V) € 7% x 7}, , then
(4.29) oyTiz. ) - 1, @ c,h, v, )D

=-(wR(E-6hG).‘7> .
Theorem 4.1. § (T,,T) < ch.

Proof. Let (z,0) € 7?3 x %nh and denote Th(z,ﬁ) by

We must find (z,d) @ D(T) such that

(4.30) Il z,0)-(z, u)[|x+ Ty (2, U)-T(5 ,u)llx

< e[z, 1l + T (2,0 k)

We choose (Z,1) as follows. Let ¢ € HE(Q) be the

solution to

(D,E)

A¢ = D, xeqaq ,
(4.31)
%1 = 0 x € 3R
n
where g% 'is the exterior normal derivative. (Note that
[ Ddx = 0 since D € Lz*(ﬂ) ). Now set =2 , U =-V¢ +

RVHU . It is clear that since 2z € Hi(ﬂ) , U ed=-p¢=-DE€ Hl(Q),

G-f=-2 =0 for xedn that (¢, e .
It follows by the definition of ¢ that Pg¢ = SO

regularity for (4.31),
< <
loll, < clioll <clioll,

Hence, we can conclude from (4.19) that

By elliptic
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|7 (sa-sth |} = 17 (o~p2o) ||
(4.32)

< cnllell, < <hlloll,. L
So,
Iz, o - il
(4.33) = ||v(sa-s8) || < chllp| L
< chllTy (2,0l -
Denote T(Z,u) by (d,8) . It follows from (4.31) that

d=D. Since 69h(;,5) = (Z,ﬁ) , we obtain from (4.29)

- -

(4.34) {0, 8-E, 7Y = Cwr(76-7P20) V> .

Y

Thus, if we set V = Ehg - E in (4.34) and use the Cauchy~Schwarz

inequality we can derive the estimate

In

c |[ve-vrgell < chil off,
(4.35)

[

chliplly < enllT, (2.l .

We must now estimate

(4.36) lle-3,&ll = ,inf {|&-x]|
X€577h
By the definition of T ,
e = -V¢ - fu - wRA
(4.37) = - 92 - £(-V¢ + RVHU)

- w(=RV$ - VHU) .

However,
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(4.38) -72 - £RVHO + JvHU € 7,
and
(4.39) [[£9¢ + wRVs{{; < ¢ |[[Df[; -
so,

l[E—ahEH =  inf || £7¢ +-wRVS~X ||

Xeh

(4.40)

(W

ch || £79 + wRV4|] 1

I A

ch [[D]ly < ehfT, (2, D) I, .

The triangle inequality, (4.35) and (4.40) yield
IT(z,q) - T, (z,0)]

(4.41) B X

= JB-Ell < enliTy (2, D ly -

Thus, (4.30) follows from (4.33) and (4.41). Q.E.D.

Now let A € o{T) be an isolated eigenvalue of T with
finite algebraic multiplicity m . Let E(X) be the generalized
eigenspace corresponding to A . It follows from Theorem 1.3

that we are interested in an estimate for G(Tla(X)'Th}'

Theorem 4.2. Let )\ €@ g(T) be an isolated eigenvalue of

T and let E(X) be its associated generalized eigenspace.

Assume dim E{(X) = m < «» , and assume that (c,ﬁ) € E(X)

r+l

implies that ¢ e uX™l(a) , S ewt@? , v .0 e &*(q).
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Then there exists ¢ < = , independent of h , such that

o r
(4.42; §(Tlg gy Tn) < 0 -
Proof. Let (I,4) € E(X) . sSet (2,U0) = <9h(;,u) . It

follows from (4.19) and (4.22) that
- - LT . G
(4.43) Iz, Q) - B Ay < ent Clisllp g+ el

> -+ . .
Also, setting (Y,V) = QT(z,0) - T, P, (5,0 in (4.29) and
using the Cauchy-Schwarz inequality we obtain
G 3 = D - - Y
llQ,T(z,m) - Ty # (za)ily =g T &) Thfh(s.u) i
(4.44)

< o |la-G,51 < en® 131,

Finally from (4.22) and (4.24) we obtain

(4.45) Tz, @ - QT(z,d) Ik

ch® ( |lz]]

In

R T NS

The result of the theorem now follows from (4.43), (4.44),
{(4.45) and the finite dimensionality of E(X) . Q.E.D.
Finally, we note that our results can be combined with
the results in [3] to obtain optimal order estimates on the
convergence of eigenvalues. Assume that the conditions of
Theorem 4.2 are valid. Let E(X*) denote the generalized
eigenspace associated with the eigenvalue A of T* . We note
that it is well known that dim E (X*) = m and that X is an

isolated eigenvalue.
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Let
Wh = G(E(X),E\Xh)) '
Wy = G(E(X*),E(Xh))
Let a be the ascent of X . Then it follows from Proposition
3.2 of [3] that for ho sufficiently small
max |A-A, . |* < cwwt
l=l’ .oy l,h - h h
L 9 Ao AR
Ix - = L \i pl 2 wpw, » B < hy

Under the hypotheses of Theorem 4.2 we have proven that
&h < ch’ . Now assume, in addition, that (z,d) € E(X*)
implies that ¢ e BXt (a) , G e wf@?, 7.4 e a5 ().
Then we can conclude from applying the above arguments

to the adjoint problem that Q; < ch® . Hence, under the

above conditions we obtain the optimal order eigenvalue

estimates

max [A=2, hla < ch?t ,
i=l,...,m ‘
m
1 2r
A= = izl Ai,hl <ch®™ , h<hy.
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